Printed Page: 1 of 2 Subject Code: KAS203T

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22

ENGINEERING MATHEMATICS-II

Time:3 Hours Notes-

- Total Marks:100
- Attempt all sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SEC	CTION -A	Attempt all of following question in brief	Marks (10×2=20)	CO
Q.1(a)	Find the differential equation which represents the family of straight lines passing through the origins?			1
Q.1(b)	State the cridifferential	terion for linearly independent solutions of the homogen equation.	eous linear nth order	1
Q.1(c)	Evaluate:∫ ₀ ¹	$\frac{dx}{\sqrt{-\log x}}$.		2
Q.1(d)	Find the volume of the solid obtained by rotating the ellipse $x^2 + 9y^2 = 9$ about the <i>x</i> -axis.			2
Q.1(e)	Test the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$.		3	
Q.1(f)	Find the constant term when $f(x) = 1 + x $ is expanded in Fourier series in the interval (-3, 3).			3
Q.1(g)	Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.		4	
Q.1(h)	Find the image of $ z - 2i = 2$ under the mapping $w = \frac{1}{z}$.		4	
Q.1(i)	Expand $f(z)$	$e^{z} = e^{z/(z-2)}$ in a Laurent series about the point $z = 2$.		5
Q.1(j)	Discuss the	nature of singularity of $\frac{\cot \pi z}{(z-a)^2}$ at $z = a$ and $z = \infty$.	~	5

				1
SEC	TION -B	Attempt any three of the following questions	Marks (3×10=30)	CO
Q.2(a)	Solve: $\frac{d^2x}{dt^2}$ +	$-\frac{dy}{dt} + 3x = e^{-t}$, $\frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$		1
Q.2(b)	Assuming F	$n \Gamma(1-n) = \pi \operatorname{cosec} n\pi, \ 0 < n < 1$, show that $\int_0^\infty \frac{x^{p-1}}{1+x} dx$	$= \frac{\pi}{\sin n\pi} ; 0$	2
Q.2(c)		$\operatorname{es} \frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \dots$		3
Q.2(d)	If $f(z) = u$ $f\left(\frac{\pi}{2}\right) = \frac{3-\pi}{2}$	+ iv is an analytic function, find $f(z)$ in term of z if $u - v = \frac{i}{2}$.	$\frac{e^{y} - \cos x + \sin x}{\cosh y - \cos x}$ when	4
Q.2(e)	Evaluate by	contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta$; $n \in I$.		5

PAPER ID-4216/2

۰

Total Marley 10

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22 **ENGINEERING MATHEMATICS-II**

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.3(a)	Use the variation of parameter method to solve the differential equation			1
		$(D^2 - 1)y = 2(1 - e^{-2x})^{-1/2}$		
Q.3(b)	Solve: (1 +	$x)^{2}\frac{d^{2}y}{dx^{2}} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x).$		1

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.4(a)	The arc of the cardioid $r = a(1 + \cos \theta)$ included between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ is rotated about the line $=\frac{\pi}{2}$. Find the area of surface generated.		2	
Q.4(b)	Evaluate $\iiint xyz \sin(x + y + z)dx dy dz$, the integral being extended to all positive values of the variables subject to the condition $+y + z \le \frac{\pi}{2}$.		2	

SEC	CTION -C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.5(a)	Test for con	vergence of the series $\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{3!} + \dots$	X	3
Q.5(b)	Obtain Four	ier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0\\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$.	0.31.1	3
	Hence dedu	ce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \cdots = \frac{\pi^2}{8}$.	N.	
		O,	V~	

SEC	TION -C	Attempt any one of the following questions	5	Marks (1×10=10)	СО
Q.6(a)		$v = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper	alf of the	e w-plane. What is	4
	the image of	f the circle $ z = 1$ under this transformation?			
Q.6(b)		ear transformation which maps the points $i, -i, 1$ of the respectively.	z —plano	e into $0, 1, \infty$ of the	4

	ГІОN -C		Marks (1×10=10)	CO
Q.7(a)	Evaluate \oint_c	$\frac{e^z}{z(1-z)^3}dz$, where c is (i) $ z = \frac{1}{2}$ (ii) $ z - 1 = \frac{1}{2}$ (iii) $ z $	= 2.	5
Q.7(b)		/lor's and Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ < 3 (<i>iii</i>) $ z > 3$.	$\frac{1}{2}$ when (<i>i</i>) $ z < 2$	5

2º