Roll No:

\square
BTECH
(SEM II) THEORY EXAMINATION 2021-22
MATHEMATICS II
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 * \mathbf{1 0}=\mathbf{2 0}$

Q. No.	Questions	CO
(a)	Solve $\left((D+1)^{3} y=2 e^{-x}\right.$	1
(b)	What are the roots of the indicial equation for the power series solution of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-3\right) \mathrm{y}=0$	1
(c)	Find the volume of hemisphere.	2
(d)	Examine the convergence of improper integral $\int_{2}^{\infty} \frac{1}{(x \log x)}$ dx	

SECTION B

2. Attempt any three of the following:
$10 * 3=30$

Q. No	Questions	CO
(a)	Solve $x \frac{d^{2} y}{d x^{2}}+\left(4 x^{2}-1\right) \frac{d y}{d x}+4 x^{3} y=2 x^{3}$	1
(b)	Show that $\Gamma(\mathrm{m}) \cdot \Gamma\left(\mathrm{m}+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{(2)^{2 m}-1} \Gamma(2 \mathrm{~m})$ where m is positive.	2
(c)	Obtain Fourier series for $f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}$	3
(d)	Examine the nature of the function $f(z)=\left\{\begin{array}{ll}\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}}, & z \neq 0 \\ 0 & , z=0\end{array}\right.$ in the region including the origin.	4
(e)	Evaluate $\frac{1}{2 \pi i} \oint_{C} \frac{z^{2}-z+1}{z-2} d z$, where $C \equiv\|z-1\|=\frac{1}{2}$	5

Roll No: \square
BTECH
(SEM II) THEORY EXAMINATION 2021-22
MATHEMATICS II

SECTION C

3. Attempt any one part of the following:
$10 * 1=10$

Q. No	Questions	CO
(a)	Solve by change of independent variable method $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+\mathrm{x}) \frac{d y}{d x}+\mathrm{y}=4 \cos \log (1+x)$	1
(b)	Solve the equations $\mathrm{t} \frac{d y}{d t}+\mathrm{x}=0$ and $\mathrm{t} \frac{d x}{d t}+\mathrm{y}=0$ given $\mathrm{x}(0)=1$ and $\mathrm{y}(-1)=0$	1

4. Attempt any one part of the following:
$10 * 1=10$

(a)	Analyze the volume contained in the solid region in the $1^{\text {st }}$ octant of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ by applying Dirichlet's Integral	2
(b)	Establish the relation between Beta and Gamma function.	2

5. Attempt any one part of the following:
$10 * 1=10$
(a) Find half range Fourier sine series for $f(x)=\left\{\begin{array}{l}x, \quad 0<x<\pi / 2 \\ \pi-x, \frac{\pi}{2}<x<\pi\end{array}\right.$
(b) Examine the series for convergence or divergence

$$
1+\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+\cdots
$$

6. Attempt any one part of the following:
$10 * 1=10$
(a) Define an analytic function. If $f(z)=u+i v$ is an analytic function \square find $\mathrm{f}(\mathrm{z})$ in terms of z if $u-v=e^{x}(\cos y-\sin y)$.
(b)

Find the image of the circle $|z-1|=1$ in the complex plane under the mapping $w=1 / z$.

| 4 |
| :--- | :--- |

7. Attempt any one part of the following:
$10 * \mathbf{1}=10$

(a)	Find Laurent series expansion of $\frac{1-\cos z}{z^{3}}$ about the point $\mathrm{z}=0$ is	5
(b)	Find residue at each pole of the function $\frac{4+3 Z}{(z-2)(z-3)}$ and hence using	5
Cauchy residue theorem evaluate integral $\oint_{C} \frac{4+3 Z}{(z-2)(z-3)} d z$, where C:		
$\|z\|=1$		

