Roll No:

BTECH (SEM II) THEORY EXAMINATION 2021-22 **ENGINEERING MATHEMATICS-II**

Time:3 Hours Notes-

Total Marks:100

- Attempt all sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly. •

SECTION -A		Attempt all of following question in brief	Marks (10×2=20)	CO
Q.1(a)	Find the inv	Therefore a series of the matrix $A = \begin{bmatrix} 4 & 3 \\ 5 & 7 \end{bmatrix}$.		1
Q.1(b)	For what va	lue of 'b' the rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{bmatrix}$ is 2.		1
Q.1(c)	Show that <i>f</i>	$(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.		2
Q.1(d)	Define a har	monic function and conjugate harmonic function.		2
Q.1(e)	Find the uni	t normal vector to the surface $z = x^2 + y^2$ at the point (1, 1, 2)).	3
Q.1(f)	Find the val	ue of 'a' for which the vector field $\vec{v} = a(x+y)\hat{\imath} + 4y\hat{\jmath} + 3\hat{k}$,	is solenoidal.	3
Q.1(g)	Find the cor	istant term when $f(x) = 1 + x $ is expanded in Fourier series	in the interval (-3, 3).	4
Q.1(h)	State Dirich	let's condition for the expansion of $f(x)$ in Fourier series.	0.5	4
Q.1(i)	Classify: $\frac{\partial u}{\partial t}$	$=c^2\frac{\partial^2 u}{\partial x^2}.$	NA.	5
Q.1(j)	Find the ger	neral solution of $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$ using method of separation of variable	es.	5

SECTION -B		Attempt any three of the following questions	Marks (3×10=30)	CO
Q.2(a)	Find the value of k, such that the system of equations $4x + 9y + z = 0$, $kx + 3y + kz = 0$ and			1
	x + 4y + 2	z = 0 Has non-trivial solution. Hence find the solution of the	system.	
Q.2(b)	$\mathrm{If}f(z)=u$	+ <i>iv</i> is an analytic function, find $f(z)$ in term of z if $u - v$	$=\frac{e^{y}-\cos x+\sin x}{\cosh y-\cos x}$	2
	When $f\left(\frac{\pi}{2}\right)$	$\left(\frac{1}{2}\right) = \frac{3-i}{2}$		
Q.2(c)	Use Diverg	ence Theorem to evaluate $\iint_{\vec{S}} \vec{F} d\vec{S}$ where $\vec{F} = 4x\hat{\imath} - 2y^2\hat{\jmath}$ -	$z^2 \hat{k}$ and S is the	3
	surface bou	nding the region $x^2 + y^2 = 4$, $z = 0$ and $z = 3$.		
Q.2(d)	For the Fou	rier series for the function given by $f(x) = \begin{cases} 2t & 0 < t < \\ 2(2-t), 1 < t < \end{cases}$	1 2.	4
Q.2(e)	A tightly str	retched string with fixed end points $x = 0$ and $x = l$ is initial	y in a position given	5
	by $y = y_0 s$	$in^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the c	isplacement $y(x, t)$.	

Roll No:

BTECH

(SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

SECTION -C Attempt any one of the following questions Marks (1×10=10) CO 2] 1 1 Q.3(a) 1 Verify Cayley-Hamilton Theorem for the matrix A =1 . Hence evaluate A^{-1} . 3 1 3 2 1 3 Q.3(b) -2 Г2 1 Find the Eigen values and Eigen vectors of the matrix A =1 1 1 3 $^{-1}$

SEC	TION -C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.4(a)	If f (z) is a re	gular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$.	•	2
Q.4(b)	An electrostatic field in the $xy - plane$ is given by the potential function $\varphi = 3x^2y - y^3$, find the stream function and hence find complex potential.			2

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.5(a)	State and ve	rify Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - y^2)dx$	6xy)dy where C is	3
	the boundar	y of the region bounded by $x \ge 0$, $y \le 0$ and $2x - 3y = 6$.		
Q.5(b)	If the direct	onal derivative of $\varphi = ax^2y + by^2z + cz^2x$ at the point (1, 1,	1) has maximum	3
	magnitude 1	5 in the direction parallel to the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$, find the va	lues of a, b and c.	

SEC	TION -C	Attempt any one of the following questions	Marks (1×10=10)	CO
Q.6(a)	Obtain Four Hence dedu	ier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & \pi < x < 0\\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$. ce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \dots \dots = \frac{\pi^2}{8}$.		4
Q.6(b)	Solve $(D^2 -$	$-DD' - 2D'^{2} + 2D' + 2D)z = e^{2x+3y} + \sin(2x+y) + xy.$		4
		6		

SECTION -C		Attempt any one of the following questions	Marks (1×10=10)	CO
Q.7(a)	Use the method of separation of variables to solve the equation $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u = 0$ when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ when $x = 0$.		5	
Q.7(b)	Find the ten temperature	perature distribution in a rod of length 2m whose end points are zero and initial temperature distribution is $f(x) = 100x$.	e fixed at	5